Statistics > Machine Learning
[Submitted on 22 Jan 2020 (v1), last revised 4 Apr 2022 (this version, v2)]
Title:Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved Complexities
View PDFAbstract:In this paper, we study zeroth-order algorithms for minimax optimization problems that are nonconvex in one variable and strongly-concave in the other variable. Such minimax optimization problems have attracted significant attention lately due to their applications in modern machine learning tasks. We first consider a deterministic version of the problem. We design and analyze the Zeroth-Order Gradient Descent Ascent (\texttt{ZO-GDA}) algorithm, and provide improved results compared to existing works, in terms of oracle complexity. We also propose the Zeroth-Order Gradient Descent Multi-Step Ascent (\texttt{ZO-GDMSA}) algorithm that significantly improves the oracle complexity of \texttt{ZO-GDA}. We then consider stochastic versions of \texttt{ZO-GDA} and \texttt{ZO-GDMSA}, to handle stochastic nonconvex minimax problems. For this case, we provide oracle complexity results under two assumptions on the stochastic gradient: (i) the uniformly bounded variance assumption, which is common in traditional stochastic optimization, and (ii) the Strong Growth Condition (SGC), which has been known to be satisfied by modern over-parametrized machine learning models. We establish that under the SGC assumption, the complexities of the stochastic algorithms match that of deterministic algorithms. Numerical experiments are presented to support our theoretical results.
Submission history
From: Krishnakumar Balasubramanian [view email][v1] Wed, 22 Jan 2020 00:05:14 UTC (29 KB)
[v2] Mon, 4 Apr 2022 23:36:08 UTC (370 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.