Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 3 Feb 2020 (v1), last revised 14 Feb 2020 (this version, v2)]
Title:End-to-End Automatic Speech Recognition Integrated With CTC-Based Voice Activity Detection
View PDFAbstract:This paper integrates a voice activity detection (VAD) function with end-to-end automatic speech recognition toward an online speech interface and transcribing very long audio recordings. We focus on connectionist temporal classification (CTC) and its extension of CTC/attention architectures. As opposed to an attention-based architecture, input-synchronous label prediction can be performed based on a greedy search with the CTC (pre-)softmax output. This prediction includes consecutive long blank labels, which can be regarded as a non-speech region. We use the labels as a cue for detecting speech segments with simple thresholding. The threshold value is directly related to the length of a non-speech region, which is more intuitive and easier to control than conventional VAD hyperparameters. Experimental results on unsegmented data show that the proposed method outperformed the baseline methods using the conventional energy-based and neural-network-based VAD methods and achieved an RTF less than 0.2. The proposed method is publicly available.
Submission history
From: Takenori Yoshimura [view email][v1] Mon, 3 Feb 2020 03:36:34 UTC (245 KB)
[v2] Fri, 14 Feb 2020 06:15:58 UTC (124 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.