Mathematics > Numerical Analysis
[Submitted on 12 Feb 2020]
Title:Algebraic multigrid block preconditioning for multi-group radiation diffusion equations
View PDFAbstract:The paper focuses on developing and studying efficient block preconditioners based on classical algebraic multigrid for the large-scale sparse linear systems arising from the fully coupled and implicitly cell-centered finite volume discretization of multi-group radiation diffusion equations, whose coefficient matrices can be rearranged into the $(G+2)\times(G+2)$ block form, where $G$ is the number of energy groups. The preconditioning techniques are based on the monolithic classical algebraic multigrid method, physical-variable based coarsening two-level algorithm and two types of block Schur complement preconditioners. The classical algebraic multigrid is applied to solve the subsystems that arise in the last three block preconditioners. The coupling strength and diagonal dominance are further explored to improve performance. We use representative one-group and twenty-group linear systems from capsule implosion simulations to test the robustness, efficiency, strong and weak parallel scaling properties of the proposed methods. Numerical results demonstrate that block preconditioners lead to mesh- and problem-independent convergence, and scale well both algorithmically and in parallel.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.