Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Feb 2020 (v1), last revised 8 Sep 2020 (this version, v3)]
Title:Discernible Image Compression
View PDFAbstract:Image compression, as one of the fundamental low-level image processing tasks, is very essential for computer vision. Tremendous computing and storage resources can be preserved with a trivial amount of visual information. Conventional image compression methods tend to obtain compressed images by minimizing their appearance discrepancy with the corresponding original images, but pay little attention to their efficacy in downstream perception tasks, e.g., image recognition and object detection. Thus, some of compressed images could be recognized with bias. In contrast, this paper aims to produce compressed images by pursuing both appearance and perceptual consistency. Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images, and making them similar. Thus the compressed images are discernible to subsequent tasks, and we name our method as Discernible Image Compression (DIC). In addition, the maximum mean discrepancy (MMD) is employed to minimize the difference between feature distributions. The resulting compression network can generate images with high image quality and preserve the consistent perception in the feature domain, so that these images can be well recognized by pre-trained machine learning models. Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models. For instance, the mAP value of compressed images by DIC is about 0.6% higher than that of using compressed images by conventional methods.
Submission history
From: Zhaohui Yang [view email][v1] Mon, 17 Feb 2020 07:35:08 UTC (1,632 KB)
[v2] Sun, 30 Aug 2020 13:54:31 UTC (8,837 KB)
[v3] Tue, 8 Sep 2020 00:44:12 UTC (8,837 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.