Computer Science > Computation and Language
[Submitted on 28 Feb 2020 (v1), last revised 3 Dec 2020 (this version, v2)]
Title:Robust Unsupervised Neural Machine Translation with Adversarial Denoising Training
View PDFAbstract:Unsupervised neural machine translation (UNMT) has recently attracted great interest in the machine translation community. The main advantage of the UNMT lies in its easy collection of required large training text sentences while with only a slightly worse performance than supervised neural machine translation which requires expensive annotated translation pairs on some translation tasks. In most studies, the UMNT is trained with clean data without considering its robustness to the noisy data. However, in real-world scenarios, there usually exists noise in the collected input sentences which degrades the performance of the translation system since the UNMT is sensitive to the small perturbations of the input sentences. In this paper, we first time explicitly take the noisy data into consideration to improve the robustness of the UNMT based systems. First of all, we clearly defined two types of noises in training sentences, i.e., word noise and word order noise, and empirically investigate its effect in the UNMT, then we propose adversarial training methods with denoising process in the UNMT. Experimental results on several language pairs show that our proposed methods substantially improved the robustness of the conventional UNMT systems in noisy scenarios.
Submission history
From: Haipeng Sun [view email][v1] Fri, 28 Feb 2020 05:17:55 UTC (187 KB)
[v2] Thu, 3 Dec 2020 03:19:36 UTC (77 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.