Computer Science > Data Structures and Algorithms
[Submitted on 17 Mar 2020]
Title:A Scaling Algorithm for Weighted $f$-Factors in General Graphs
View PDFAbstract:We study the maximum weight perfect $f$-factor problem on any general simple graph $G=(V,E,w)$ with positive integral edge weights $w$, and $n=|V|$, $m=|E|$. When we have a function $f:V\rightarrow \mathbb{N}_+$ on vertices, a perfect $f$-factor is a generalized matching so that every vertex $u$ is matched to $f(u)$ different edges. The previous best algorithms on this problem have running time $O(m f(V))$ [Gabow 2018] or $\tilde{O}(W(f(V))^{2.373}))$ [Gabow and Sankowski 2013], where $W$ is the maximum edge weight, and $f(V)=\sum_{u\in V}f(u)$. In this paper, we present a scaling algorithm for this problem with running time $\tilde{O}(mn^{2/3}\log W)$. Previously this bound is only known for bipartite graphs [Gabow and Tarjan 1989]. The running time of our algorithm is independent of $f(V)$, and consequently it first breaks the $\Omega(mn)$ barrier for large $f(V)$ even for the unweighted $f$-factor problem in general graphs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.