Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Mar 2020]
Title:What Deep CNNs Benefit from Global Covariance Pooling: An Optimization Perspective
View PDFAbstract:Recent works have demonstrated that global covariance pooling (GCP) has the ability to improve performance of deep convolutional neural networks (CNNs) on visual classification task. Despite considerable advance, the reasons on effectiveness of GCP on deep CNNs have not been well studied. In this paper, we make an attempt to understand what deep CNNs benefit from GCP in a viewpoint of optimization. Specifically, we explore the effect of GCP on deep CNNs in terms of the Lipschitzness of optimization loss and the predictiveness of gradients, and show that GCP can make the optimization landscape more smooth and the gradients more predictive. Furthermore, we discuss the connection between GCP and second-order optimization for deep CNNs. More importantly, above findings can account for several merits of covariance pooling for training deep CNNs that have not been recognized previously or fully explored, including significant acceleration of network convergence (i.e., the networks trained with GCP can support rapid decay of learning rates, achieving favorable performance while significantly reducing number of training epochs), stronger robustness to distorted examples generated by image corruptions and perturbations, and good generalization ability to different vision tasks, e.g., object detection and instance segmentation. We conduct extensive experiments using various deep CNN models on diversified tasks, and the results provide strong support to our findings.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.