Mathematics > Optimization and Control
[Submitted on 24 Mar 2020 (v1), last revised 10 Jul 2020 (this version, v2)]
Title:On the Complexity and Approximability of Optimal Sensor Selection and Attack for Kalman Filtering
View PDFAbstract:Given a linear dynamical system affected by stochastic noise, we consider the problem of selecting an optimal set of sensors (at design-time) to minimize the trace of the steady state a priori or a posteriori error covariance of the Kalman filter, subject to certain selection budget constraints. We show the fundamental result that there is no polynomial-time constant-factor approximation algorithm for this problem. This contrasts with other classes of sensor selection problems studied in the literature, which typically pursue constant-factor approximations by leveraging greedy algorithms and submodularity (or supermodularity) of the cost function. Here, we provide a specific example showing that greedy algorithms can perform arbitrarily poorly for the problem of design-time sensor selection for Kalman filtering. We then study the problem of attacking (i.e., removing) a set of installed sensors, under predefined attack budget constraints, to maximize the trace of the steady state a priori or a posteriori error covariance of the Kalman filter. Again, we show that there is no polynomial-time constant-factor approximation algorithm for this problem, and show specifically that greedy algorithms can perform arbitrarily poorly.
Submission history
From: Lintao Ye [view email][v1] Tue, 24 Mar 2020 19:13:36 UTC (500 KB)
[v2] Fri, 10 Jul 2020 01:44:57 UTC (497 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.