Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Apr 2020]
Title:Graph-based fusion for change detection in multi-spectral images
View PDFAbstract:In this paper we address the problem of change detection in multi-spectral images by proposing a data-driven framework of graph-based data fusion. The main steps of the proposed approach are: (i) The generation of a multi-temporal pixel based graph, by the fusion of intra-graphs of each temporal data; (ii) the use of Nyström extension to obtain the eigenvalues and eigenvectors of the fused graph, and the selection of the final change map. We validated our approach in two real cases of remote sensing according to both qualitative and quantitative analyses. The results confirm the potential of the proposed graph-based change detection algorithm outperforming state-of-the-art methods.
Submission history
From: David Alejandro Jimenez Sierra David Alejandro Jimenez-Sierra [view email][v1] Thu, 2 Apr 2020 02:59:00 UTC (2,553 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.