Computer Science > Human-Computer Interaction
[Submitted on 7 Apr 2020]
Title:Probabilistic modelling of gait for robust passive monitoring in daily life
View PDFAbstract:Passive monitoring in daily life may provide invaluable insights about a person's health throughout the day. Wearable sensor devices are likely to play a key role in enabling such monitoring in a non-obtrusive fashion. However, sensor data collected in daily life reflects multiple health and behavior related factors together. This creates the need for structured principled analysis to produce reliable and interpretable predictions that can be used to support clinical diagnosis and treatment. In this work we develop a principled modelling approach for free-living gait (walking) analysis. Gait is a promising target for non-obtrusive monitoring because it is common and indicative of various movement disorders such as Parkinson's disease (PD), yet its analysis has largely been limited to experimentally controlled lab settings. To locate and characterize stationary gait segments in free living using accelerometers, we present an unsupervised statistical framework designed to segment signals into differing gait and non-gait patterns. Our flexible probabilistic framework combines empirical assumptions about gait into a principled graphical model with all of its merits. We demonstrate the approach on a new video-referenced dataset including unscripted daily living activities of 25 PD patients and 25 controls, in and around their own houses. We evaluate our ability to detect gait and predict medication induced fluctuations in PD patients based on modelled gait. Our evaluation includes a comparison between sensors attached at multiple body locations including wrist, ankle, trouser pocket and lower back.
Current browse context:
cs.HC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.