Computer Science > Machine Learning
[Submitted on 8 Apr 2020]
Title:Saliency-based Weighted Multi-label Linear Discriminant Analysis
View PDFAbstract:In this paper, we propose a new variant of Linear Discriminant Analysis (LDA) to solve multi-label classification tasks. The proposed method is based on a probabilistic model for defining the weights of individual samples in a weighted multi-label LDA approach. Linear Discriminant Analysis is a classical statistical machine learning method, which aims to find a linear data transformation increasing class discrimination in an optimal discriminant subspace. Traditional LDA sets assumptions related to Gaussian class distributions and single-label data annotations. To employ the LDA technique in multi-label classification problems, we exploit intuitions coming from a probabilistic interpretation of class saliency to redefine the between-class and within-class scatter matrices. The saliency-based weights obtained based on various kinds of affinity encoding prior information are used to reveal the probability of each instance to be salient for each of its classes in the multi-label problem at hand. The proposed Saliency-based weighted Multi-label LDA approach is shown to lead to performance improvements in various multi-label classification problems.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.