Electrical Engineering and Systems Science > Systems and Control
[Submitted on 9 Apr 2020 (v1), last revised 13 May 2021 (this version, v2)]
Title:Robust Dual Control based on Gain Scheduling
View PDFAbstract:We present a novel strategy for robust dual control of linear time-invariant systems based on gain scheduling with performance guarantees. This work relies on prior results of determining uncertainty bounds of system parameters estimated through exploration. Existing approaches are unable to account for changes of the mean of system parameters in the exploration phase and thus to accurately capture the dual effect. We address this limitation by selecting the future (uncertain) mean as a scheduling variable in the control design. The result is a semi-definite program-based design that computes a suitable exploration strategy and a robust gain-scheduled controller with probabilistic quadratic performance bounds after the exploration phase.
Submission history
From: Janani Venkatasubramanian [view email][v1] Thu, 9 Apr 2020 14:36:02 UTC (128 KB)
[v2] Thu, 13 May 2021 11:07:15 UTC (128 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.