Computer Science > Data Structures and Algorithms
[Submitted on 27 Apr 2020]
Title:The Streaming k-Mismatch Problem: Tradeoffs between Space and Total Time
View PDFAbstract:We revisit the $k$-mismatch problem in the streaming model on a pattern of length $m$ and a streaming text of length $n$, both over a size-$\sigma$ alphabet. The current state-of-the-art algorithm for the streaming $k$-mismatch problem, by Clifford et al. [SODA 2019], uses $\tilde O(k)$ space and $\tilde O\big(\sqrt k\big)$ worst-case time per character. The space complexity is known to be (unconditionally) optimal, and the worst-case time per character matches a conditional lower bound. However, there is a gap between the total time cost of the algorithm, which is $\tilde O(n\sqrt k)$, and the fastest known offline algorithm, which costs $\tilde O\big(n + \min\big(\frac{nk}{\sqrt m},\sigma n\big)\big)$ time. Moreover, it is not known whether improvements over the $\tilde O(n\sqrt k)$ total time are possible when using more than $O(k)$ space.
We address these gaps by designing a randomized streaming algorithm for the $k$-mismatch problem that, given an integer parameter $k\le s \le m$, uses $\tilde O(s)$ space and costs $\tilde O\big(n+\min\big(\frac {nk^2}m,\frac{nk}{\sqrt s},\frac{\sigma nm}s\big)\big)$ total time. For $s=m$, the total runtime becomes $\tilde O\big(n + \min\big(\frac{nk}{\sqrt m},\sigma n\big)\big)$, which matches the time cost of the fastest offline algorithm. Moreover, the worst-case time cost per character is still $\tilde O\big(\sqrt k\big)$.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.