Computer Science > Information Retrieval
[Submitted on 13 May 2020]
Title:Fashion Recommendation and Compatibility Prediction Using Relational Network
View PDFAbstract:Fashion is an inherently visual concept and computer vision and artificial intelligence (AI) are playing an increasingly important role in shaping the future of this domain. Many research has been done on recommending fashion products based on the learned user preferences. However, in addition to recommending single items, AI can also help users create stylish outfits from items they already have, or purchase additional items that go well with their current wardrobe. Compatibility is the key factor in creating stylish outfits from single items. Previous studies have mostly focused on modeling pair-wise compatibility. There are a few approaches that consider an entire outfit, but these approaches have limitations such as requiring rich semantic information, category labels, and fixed order of items. Thus, they fail to effectively determine compatibility when such information is not available. In this work, we adopt a Relation Network (RN) to develop new compatibility learning models, Fashion RN and FashionRN-VSE, that addresses the limitations of existing approaches. FashionRN learns the compatibility of an entire outfit, with an arbitrary number of items, in an arbitrary order. We evaluated our model using a large dataset of 49,740 outfits that we collected from Polyvore website. Quantitatively, our experimental results demonstrate state of the art performance compared with alternative methods in the literature in both compatibility prediction and fill-in-the-blank test. Qualitatively, we also show that the item embedding learned by FashionRN indicate the compatibility among fashion items.
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.