Computer Science > Cryptography and Security
[Submitted on 15 May 2020 (v1), last revised 8 Jun 2021 (this version, v4)]
Title:Evaluating and Improving Adversarial Robustness of Machine Learning-Based Network Intrusion Detectors
View PDFAbstract:Machine learning (ML), especially deep learning (DL) techniques have been increasingly used in anomaly-based network intrusion detection systems (NIDS). However, ML/DL has shown to be extremely vulnerable to adversarial attacks, especially in such security-sensitive systems. Many adversarial attacks have been proposed to evaluate the robustness of ML-based NIDSs. Unfortunately, existing attacks mostly focused on feature-space and/or white-box attacks, which make impractical assumptions in real-world scenarios, leaving the study on practical gray/black-box attacks largely unexplored.
To bridge this gap, we conduct the first systematic study of the gray/black-box traffic-space adversarial attacks to evaluate the robustness of ML-based NIDSs. Our work outperforms previous ones in the following aspects: (i) practical-the proposed attack can automatically mutate original traffic with extremely limited knowledge and affordable overhead while preserving its functionality; (ii) generic-the proposed attack is effective for evaluating the robustness of various NIDSs using diverse ML/DL models and non-payload-based features; (iii) explainable-we propose an explanation method for the fragile robustness of ML-based NIDSs. Based on this, we also propose a defense scheme against adversarial attacks to improve system robustness. We extensively evaluate the robustness of various NIDSs using diverse feature sets and ML/DL models. Experimental results show our attack is effective (e.g., >97% evasion rate in half cases for Kitsune, a state-of-the-art NIDS) with affordable execution cost and the proposed defense method can effectively mitigate such attacks (evasion rate is reduced by >50% in most cases).
Submission history
From: Dongqi Han [view email][v1] Fri, 15 May 2020 13:06:00 UTC (1,944 KB)
[v2] Thu, 25 Jun 2020 18:21:42 UTC (1,954 KB)
[v3] Wed, 16 Dec 2020 09:25:47 UTC (2,033 KB)
[v4] Tue, 8 Jun 2021 07:25:11 UTC (2,159 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.