Electrical Engineering and Systems Science > Signal Processing
[Submitted on 26 May 2020]
Title:Real-Time Fault Detection and Process Control Based on Multi-channel Sensor Data Fusion
View PDFAbstract:Sensor signals acquired in the industrial process contain rich information which can be analyzed to facilitate effective monitoring of the process, early detection of system anomalies, quick diagnosis of fault root causes, and intelligent system design and control. In many mechatronic systems, multiple signals are acquired by different sensor channels (i.e. multi-channel data) which can be represented by high-order arrays (tensorial data). The multi-channel data has a high-dimensional and complex cross-correlation structure. It is crucial to develop a method that considers the interrelationships between different sensor channels. This paper proposes a new process monitoring approach based on uncorrelated multilinear discriminant analysis that can effectively model the multi-channel data to achieve a superior monitoring and fault diagnosis performance compared to other competing methods. The proposed method is applied directly to the high-dimensional tensorial data. Features are extracted and combined with multivariate control charts to monitor multi-channel data. The effectiveness of the proposed method in quick detection of process changes is demonstrated with both the simulation and a real-world case study.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.