Computer Science > Information Retrieval
[Submitted on 3 Jun 2020 (v1), last revised 5 Jun 2020 (this version, v3)]
Title:Towards Personalized and Semantic Retrieval: An End-to-End Solution for E-commerce Search via Embedding Learning
View PDFAbstract:Nowadays e-commerce search has become an integral part of many people's shopping routines. Two critical challenges stay in today's e-commerce search: how to retrieve items that are semantically relevant but not exact matching to query terms, and how to retrieve items that are more personalized to different users for the same search query. In this paper, we present a novel approach called DPSR, which stands for Deep Personalized and Semantic Retrieval, to tackle this problem. Explicitly, we share our design decisions on how to architect a retrieval system so as to serve industry-scale traffic efficiently and how to train a model so as to learn query and item semantics accurately. Based on offline evaluations and online A/B test with live traffics, we show that DPSR model outperforms existing models, and DPSR system can retrieve more personalized and semantically relevant items to significantly improve users' search experience by +1.29% conversion rate, especially for long tail queries by +10.03%. As a result, our DPSR system has been successfully deployed into this http URL's search production since 2019.
Submission history
From: Han Zhang [view email][v1] Wed, 3 Jun 2020 14:04:30 UTC (2,124 KB)
[v2] Thu, 4 Jun 2020 05:26:31 UTC (2,125 KB)
[v3] Fri, 5 Jun 2020 06:39:49 UTC (2,125 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.