Computer Science > Cryptography and Security
[Submitted on 11 Jul 2020]
Title:ManiGen: A Manifold Aided Black-box Generator of Adversarial Examples
View PDFAbstract:Machine learning models, especially neural network (NN) classifiers, have acceptable performance and accuracy that leads to their wide adoption in different aspects of our daily lives. The underlying assumption is that these models are generated and used in attack free scenarios. However, it has been shown that neural network based classifiers are vulnerable to adversarial examples. Adversarial examples are inputs with special perturbations that are ignored by human eyes while can mislead NN classifiers. Most of the existing methods for generating such perturbations require a certain level of knowledge about the target classifier, which makes them not very practical. For example, some generators require knowledge of pre-softmax logits while others utilize prediction scores.
In this paper, we design a practical black-box adversarial example generator, dubbed ManiGen. ManiGen does not require any knowledge of the inner state of the target classifier. It generates adversarial examples by searching along the manifold, which is a concise representation of input data. Through extensive set of experiments on different datasets, we show that (1) adversarial examples generated by ManiGen can mislead standalone classifiers by being as successful as the state-of-the-art white-box generator, Carlini, and (2) adversarial examples generated by ManiGen can more effectively attack classifiers with state-of-the-art defenses.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.