Computer Science > Machine Learning
[Submitted on 24 Jul 2020]
Title:Impact of Medical Data Imprecision on Learning Results
View PDFAbstract:Test data measured by medical instruments often carry imprecise ranges that include the true values. The latter are not obtainable in virtually all cases. Most learning algorithms, however, carry out arithmetical calculations that are subject to uncertain influence in both the learning process to obtain models and applications of the learned models in, e.g. prediction. In this paper, we initiate a study on the impact of imprecision on prediction results in a healthcare application where a pre-trained model is used to predict future state of hyperthyroidism for patients. We formulate a model for data imprecisions. Using parameters to control the degree of imprecision, imprecise samples for comparison experiments can be generated using this model. Further, a group of measures are defined to evaluate the different impacts quantitatively. More specifically, the statistics to measure the inconsistent prediction for individual patients are defined. We perform experimental evaluations to compare prediction results based on the data from the original dataset and the corresponding ones generated from the proposed precision model using the long-short-term memories (LSTM) network. The results against a real world hyperthyroidism dataset provide insights into how small imprecisions can cause large ranges of predicted results, which could cause mis-labeling and inappropriate actions (treatments or no treatments) for individual patients.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.