Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Aug 2020]
Title:AutoPose: Searching Multi-Scale Branch Aggregation for Pose Estimation
View PDFAbstract:We present AutoPose, a novel neural architecture search(NAS) framework that is capable of automatically discovering multiple parallel branches of cross-scale connections towards accurate and high-resolution 2D human pose estimation. Recently, high-performance hand-crafted convolutional networks for pose estimation show growing demands on multi-scale fusion and high-resolution representations. However, current NAS works exhibit limited flexibility on scale searching, they dominantly adopt simplified search spaces of single-branch architectures. Such simplification limits the fusion of information at different scales and fails to maintain high-resolution representations. The presentedAutoPose framework is able to search for multi-branch scales and network depth, in addition to the cell-level microstructure. Motivated by the search space, a novel bi-level optimization method is presented, where the network-level architecture is searched via reinforcement learning, and the cell-level search is conducted by the gradient-based method. Within 2.5 GPU days, AutoPose is able to find very competitive architectures on the MS COCO dataset, that are also transferable to the MPII dataset. Our code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.