Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Sep 2020]
Title:Dual-path CNN with Max Gated block for Text-Based Person Re-identification
View PDFAbstract:Text-based person re-identification(Re-id) is an important task in video surveillance, which consists of retrieving the corresponding person's image given a textual description from a large gallery of images. It is difficult to directly match visual contents with the textual descriptions due to the modality heterogeneity. On the one hand, the textual embeddings are not discriminative enough, which originates from the high abstraction of the textual descriptions. One the other hand,Global average pooling (GAP) is commonly utilized to extract more general or smoothed features implicitly but ignores salient local features, which are more important for the cross-modal matching problem. With that in mind, a novel Dual-path CNN with Max Gated block (DCMG) is proposed to extract discriminative word embeddings and make visual-textual association concern more on remarkable features of both modalities. The proposed framework is based on two deep residual CNNs jointly optimized with cross-modal projection matching (CMPM) loss and cross-modal projection classification (CMPC) loss to embed the two modalities into a joint feature space. First, the pre-trained language model, BERT, is combined with the convolutional neural network (CNN) to learn better word embeddings in the text-to-image matching domain. Second, the global Max pooling (GMP) layer is applied to make the visual-textual features focus more on the salient part. To further alleviate the noise of the maxed-pooled features, the gated block (GB) is proposed to produce an attention map that focuses on meaningful features of both modalities. Finally, extensive experiments are conducted on the benchmark dataset, CUHK-PEDES, in which our approach achieves the rank-1 score of 55.81% and outperforms the state-of-the-art method by 1.3%.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.