Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Sep 2020 (v1), last revised 9 Dec 2020 (this version, v3)]
Title:Pruning Filter in Filter
View PDFAbstract:Pruning has become a very powerful and effective technique to compress and accelerate modern neural networks. Existing pruning methods can be grouped into two categories: filter pruning (FP) and weight pruning (WP). FP wins at hardware compatibility but loses at the compression ratio compared with WP. To converge the strength of both methods, we propose to prune the filter in the filter. Specifically, we treat a filter $F \in \mathbb{R}^{C\times K\times K}$ as $K \times K$ stripes, i.e., $1\times 1$ filters $\in \mathbb{R}^{C}$, then by pruning the stripes instead of the whole filter, we can achieve finer granularity than traditional FP while being hardware friendly. We term our method as SWP (\emph{Stripe-Wise Pruning}). SWP is implemented by introducing a novel learnable matrix called Filter Skeleton, whose values reflect the shape of each filter. As some recent work has shown that the pruned architecture is more crucial than the inherited important weights, we argue that the architecture of a single filter, i.e., the shape, also matters. Through extensive experiments, we demonstrate that SWP is more effective compared to the previous FP-based methods and achieves the state-of-art pruning ratio on CIFAR-10 and ImageNet datasets without obvious accuracy drop. Code is available at this https URL
Submission history
From: Meng Fanxu [view email][v1] Wed, 30 Sep 2020 03:35:16 UTC (3,349 KB)
[v2] Sun, 18 Oct 2020 15:47:13 UTC (747 KB)
[v3] Wed, 9 Dec 2020 08:35:21 UTC (748 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.