Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Oct 2020 (v1), last revised 22 Oct 2020 (this version, v2)]
Title:Unsupervised Self-training Algorithm Based on Deep Learning for Optical Aerial Images Change Detection
View PDFAbstract:Optical aerial images change detection is an important task in earth observation and has been extensively investigated in the past few decades. Generally, the supervised change detection methods with superior performance require a large amount of labeled training data which is obtained by manual annotation with high cost. In this paper, we present a novel unsupervised self-training algorithm (USTA) for optical aerial images change detection. The traditional method such as change vector analysis is used to generate the pseudo labels. We use these pseudo labels to train a well designed convolutional neural network. The network is used as a teacher to classify the original multitemporal images to generate another set of pseudo labels. Then two set of pseudo labels are used to jointly train a student network with the same structure as the teacher. The final change detection result can be obtained by the trained student network. Besides, we design an image filter to control the usage of change information in the pseudo labels in the training process of the network. The whole process of the algorithm is an unsupervised process without manually marked labels. Experimental results on the real datasets demonstrate competitive performance of our proposed method.
Submission history
From: Xiangrui Li [view email][v1] Thu, 15 Oct 2020 01:51:46 UTC (4,182 KB)
[v2] Thu, 22 Oct 2020 07:28:12 UTC (4,182 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.