Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 18 Oct 2020]
Title:Optimizing Memory Performance of Xilinx FPGAs under Vitis
View PDFAbstract:Plenty of research efforts have been devoted to FPGA-based acceleration, due to its low latency and high energy efficiency. However, using the original low-level hardware description languages like Verilog to program FPGAs requires generally good knowledge of hardware design details and hand-on experiences. Fortunately, the FPGA community intends to address this low programmability issues. For example, , with the intention that programming FPGAs is just as easy as programming GPUs. Even though Vitis is proven to increase programmability, we cannot directly obtain high performance without careful design regarding hardware pipeline and memory this http URL this paper, we focus on the memory subsystem, comprehensively and systematically benchmarking the effect of optimization methods on memory performance. Upon benchmarking, we quantitatively analyze the typical memory access patterns for a broad range of applications, including AI, HPC, and database. Further, we also provide the corresponding optimization direction for each memory access pattern so as to improve overall performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.