Computer Science > Machine Learning
[Submitted on 5 Nov 2020]
Title:A Black-Box Attack Model for Visually-Aware Recommender Systems
View PDFAbstract:Due to the advances in deep learning, visually-aware recommender systems (RS) have recently attracted increased research interest. Such systems combine collaborative signals with images, usually represented as feature vectors outputted by pre-trained image models. Since item catalogs can be huge, recommendation service providers often rely on images that are supplied by the item providers. In this work, we show that relying on such external sources can make an RS vulnerable to attacks, where the goal of the attacker is to unfairly promote certain pushed items. Specifically, we demonstrate how a new visual attack model can effectively influence the item scores and rankings in a black-box approach, i.e., without knowing the parameters of the model. The main underlying idea is to systematically create small human-imperceptible perturbations of the pushed item image and to devise appropriate gradient approximation methods to incrementally raise the pushed item's score. Experimental evaluations on two datasets show that the novel attack model is effective even when the contribution of the visual features to the overall performance of the recommender system is modest.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.