Computer Science > Machine Learning
[Submitted on 12 Nov 2020 (v1), last revised 12 Jun 2023 (this version, v3)]
Title:When Does Uncertainty Matter?: Understanding the Impact of Predictive Uncertainty in ML Assisted Decision Making
View PDFAbstract:As machine learning (ML) models are increasingly being employed to assist human decision makers, it becomes critical to provide these decision makers with relevant inputs which can help them decide if and how to incorporate model predictions into their decision making. For instance, communicating the uncertainty associated with model predictions could potentially be helpful in this regard. In this work, we carry out user studies (1,330 responses from 190 participants) to systematically assess how people with differing levels of expertise respond to different types of predictive uncertainty (i.e., posterior predictive distributions with different shapes and variances) in the context of ML assisted decision making for predicting apartment rental prices. We found that showing posterior predictive distributions led to smaller disagreements with the ML model's predictions, regardless of the shapes and variances of the posterior predictive distributions we considered, and that these effects may be sensitive to expertise in both ML and the domain. This suggests that posterior predictive distributions can potentially serve as useful decision aids which should be used with caution and take into account the type of distribution and the expertise of the human.
Submission history
From: Sean McGrath [view email][v1] Thu, 12 Nov 2020 02:23:53 UTC (7,249 KB)
[v2] Fri, 13 Nov 2020 18:36:32 UTC (7,249 KB)
[v3] Mon, 12 Jun 2023 21:57:31 UTC (2,340 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.