Computer Science > Social and Information Networks
[Submitted on 16 Nov 2020]
Title:Spatial Social Network (SSN) Hot Spot Detection: Scan Methods for Non-Planar Networks
View PDFAbstract:Moving window and hot spot detection analyses are statistical methods used to analyze point patterns within a given area. Such methods have been used to successfully detect clusters of point events such as car thefts or incidences of cancer. Yet, these methods do not account for the connections between individual events, such as social ties within a neighborhood. This paper presents two GIS methods, EdgeScan and NDScan, for capturing areas with high and low levels of local social connections. Both methods are moving window processes that count the number of edges and network density, respectively, in a given focal area (window area). The focal window attaches resultant EdgeScan and NDScan statistics to nodes at the center of the focal window area.
We implement these methods on a case study of 1960s connections between members of the Mafia in New York City. We use various definitions of a focal neighborhood including Euclidean, Manhattan and K Nearest Neighbor (KNN) definitions. We find that KNN tends to overstate the values of local networks, and that there is more variation in outcome values for nodes on the periphery of the study area. We find that, location-wise, EdgeScan and NDScan hot spots differ from traditional spatial hot spots in the study area. These methods can be extended to future studies that detect local triads and motifs, which can capture the local network structure in more detail.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.