Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Nov 2020 (v1), last revised 3 Dec 2020 (this version, v2)]
Title:Privileged Knowledge Distillation for Online Action Detection
View PDFAbstract:Online Action Detection (OAD) in videos is proposed as a per-frame labeling task to address the real-time prediction tasks that can only obtain the previous and current video frames. This paper presents a novel learning-with-privileged based framework for online action detection where the future frames only observable at the training stages are considered as a form of privileged information. Knowledge distillation is employed to transfer the privileged information from the offline teacher to the online student. We note that this setting is different from conventional KD because the difference between the teacher and student models mostly lies in input data rather than the network architecture. We propose Privileged Knowledge Distillation (PKD) which (i) schedules a curriculum learning procedure and (ii) inserts auxiliary nodes to the student model, both for shrinking the information gap and improving learning performance. Compared to other OAD methods that explicitly predict future frames, our approach avoids learning unpredictable unnecessary yet inconsistent visual contents and achieves state-of-the-art accuracy on two popular OAD benchmarks, TVSeries and THUMOS14.
Submission history
From: Peisen Zhao [view email][v1] Wed, 18 Nov 2020 08:52:15 UTC (2,054 KB)
[v2] Thu, 3 Dec 2020 12:52:54 UTC (2,054 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.