Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Nov 2020]
Title:Multi-scale Adaptive Task Attention Network for Few-Shot Learning
View PDFAbstract:The goal of few-shot learning is to classify unseen categories with few labeled samples. Recently, the low-level information metric-learning based methods have achieved satisfying performance, since local representations (LRs) are more consistent between seen and unseen classes. However, most of these methods deal with each category in the support set independently, which is not sufficient to measure the relation between features, especially in a certain task. Moreover, the low-level information-based metric learning method suffers when dominant objects of different scales exist in a complex background. To address these issues, this paper proposes a novel Multi-scale Adaptive Task Attention Network (MATANet) for few-shot learning. Specifically, we first use a multi-scale feature generator to generate multiple features at different scales. Then, an adaptive task attention module is proposed to select the most important LRs among the entire task. Afterwards, a similarity-to-class module and a fusion layer are utilized to calculate a joint multi-scale similarity between the query image and the support set. Extensive experiments on popular benchmarks clearly show the effectiveness of the proposed MATANet compared with state-of-the-art methods.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.