Computer Science > Data Structures and Algorithms
[Submitted on 18 Dec 2020]
Title:Fast and Efficient Parallel Breadth-First Search with Power-law Graph Transformation
View PDFAbstract:In the big data era, graph computing is widely used to exploit the hidden value in real-world graphs in various scenarios such as social networks, knowledge graphs, web searching, and recommendation systems. However, the random memory accesses result in inefficient use of cache and the irregular degree distribution leads to substantial load imbalance. Breadth-First Search (BFS) is frequently utilized as a kernel for many important and complex graph algorithms. In this paper, we describe a preprocessing approach using Reverse Cuthill-Mckee (RCM) algorithm to improve data locality and demonstrate how to achieve an efficient load balancing for BFS. Computations on RCM-reordered graph data are also accelerated with SIMD executions. We evaluate the performance of the graph preprocessing approach on Kronecker graphs of the Graph500 benchmark and real-world graphs. Our BFS implementation on RCM-reordered graph data achieves 326.48 MTEPS/W (mega TEPS per watt) on an ARMv8 system, ranking 2nd on the Green Graph500 list in June 2020 (the 1st rank uses GPU acceleration).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.