Computer Science > Information Retrieval
[Submitted on 14 Dec 2020 (v1), last revised 3 Jan 2022 (this version, v2)]
Title:CODE: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking
View PDFAbstract:Expert finding, a popular service provided by many online websites such as Expertise Finder, LinkedIn, and AMiner, is beneficial to seeking candidate qualifications, consultants, and collaborators. However, its quality is suffered from lack of ample sources of expert information. This paper employs AMiner as the basis with an aim at linking any external experts to the counterparts on AMiner. As it is infeasible to acquire sufficient linkages from arbitrary external sources, we explore the problem of zero-shot expert linking. In this paper, we propose CODE, which first pre-trains an expert linking model by contrastive learning on AMiner such that it can capture the representation and matching patterns of experts without supervised signals, then it is fine-tuned between AMiner and external sources to enhance the models transferability in an adversarial manner. For evaluation, we first design two intrinsic tasks, author identification and paper clustering, to validate the representation and matching capability endowed by contrastive learning. Then the final external expert linking performance on two genres of external sources also implies the superiority of the adversarial fine-tuning method. Additionally, we show the online deployment of CODE, and continuously improve its online performance via active learning.
Submission history
From: Bo Chen [view email][v1] Mon, 14 Dec 2020 03:11:11 UTC (11,814 KB)
[v2] Mon, 3 Jan 2022 06:17:40 UTC (15,444 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.