Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Dec 2020]
Title:3D Point-to-Keypoint Voting Network for 6D Pose Estimation
View PDFAbstract:Object 6D pose estimation is an important research topic in the field of computer vision due to its wide application requirements and the challenges brought by complexity and changes in the real-world. We think fully exploring the characteristics of spatial relationship between points will help to improve the pose estimation performance, especially in the scenes of background clutter and partial occlusion. But this information was usually ignored in previous work using RGB image or RGB-D data. In this paper, we propose a framework for 6D pose estimation from RGB-D data based on spatial structure characteristics of 3D keypoints. We adopt point-wise dense feature embedding to vote for 3D keypoints, which makes full use of the structure information of the rigid body. After the direction vectors pointing to the keypoints are predicted by CNN, we use RANSAC voting to calculate the coordinate of the 3D keypoints, then the pose transformation can be easily obtained by the least square method. In addition, a spatial dimension sampling strategy for points is employed, which makes the method achieve excellent performance on small training sets. The proposed method is verified on two benchmark datasets, LINEMOD and OCCLUSION LINEMOD. The experimental results show that our method outperforms the state-of-the-art approaches, achieves ADD(-S) accuracy of 98.7\% on LINEMOD dataset and 52.6\% on OCCLUSION LINEMOD dataset in real-time.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.