Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Jan 2021]
Title:Similarity Reasoning and Filtration for Image-Text Matching
View PDFAbstract:Image-text matching plays a critical role in bridging the vision and language, and great progress has been made by exploiting the global alignment between image and sentence, or local alignments between regions and words. However, how to make the most of these alignments to infer more accurate matching scores is still underexplored. In this paper, we propose a novel Similarity Graph Reasoning and Attention Filtration (SGRAF) network for image-text matching. Specifically, the vector-based similarity representations are firstly learned to characterize the local and global alignments in a more comprehensive manner, and then the Similarity Graph Reasoning (SGR) module relying on one graph convolutional neural network is introduced to infer relation-aware similarities with both the local and global alignments. The Similarity Attention Filtration (SAF) module is further developed to integrate these alignments effectively by selectively attending on the significant and representative alignments and meanwhile casting aside the interferences of non-meaningful alignments. We demonstrate the superiority of the proposed method with achieving state-of-the-art performances on the Flickr30K and MSCOCO datasets, and the good interpretability of SGR and SAF modules with extensive qualitative experiments and analyses.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.