Computer Science > Human-Computer Interaction
[Submitted on 11 Jan 2021]
Title:Learning to Automate Chart Layout Configurations Using Crowdsourced Paired Comparison
View PDFAbstract:We contribute a method to automate parameter configurations for chart layouts by learning from human preferences. Existing charting tools usually determine the layout parameters using predefined heuristics, producing sub-optimal layouts. People can repeatedly adjust multiple parameters (e.g., chart size, gap) to achieve visually appealing layouts. However, this trial-and-error process is unsystematic and time-consuming, without a guarantee of improvement. To address this issue, we develop Layout Quality Quantifier (LQ2), a machine learning model that learns to score chart layouts from pairwise crowdsourcing data. Combined with optimization techniques, LQ2 recommends layout parameters that improve the charts' layout quality. We apply LQ2 on bar charts and conduct user studies to evaluate its effectiveness by examining the quality of layouts it produces. Results show that LQ2 can generate more visually appealing layouts than both laypeople and baselines. This work demonstrates the feasibility and usages of quantifying human preferences and aesthetics for chart layouts.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.