Computer Science > Software Engineering
[Submitted on 17 Jan 2021]
Title:Profiling Software Developers with Process Mining and N-Gram Language Models
View PDFAbstract:Context: Profiling developers is challenging since many factors, such as their skills, experience, development environment and behaviors, may influence a detailed analysis and the delivery of coherent interpretations.
Objective: We aim at profiling software developers by mining their software development process. To do so, we performed a controlled experiment where, in the realm of a Python programming contest, a group of developers had the same well-defined set of requirements specifications and a well-defined sprint schedule. Events were collected from the PyCharm IDE, and from the Mooshak automatic jury where subjects checked-in their code.
Method: We used n-gram language models and text mining to characterize developers' profiles, and process mining algorithms to discover their overall workflows and extract the correspondent metrics for further evaluation.
Results: Findings show that we can clearly characterize with a coherent rationale most developers, and distinguish the top performers from the ones with more challenging behaviors. This approach may lead ultimately to the creation of a catalog of software development process smells.
Conclusions: The profile of a developer provides a software project manager a clue for the selection of appropriate tasks he/she should be assigned. With the increasing usage of low and no-code platforms, where coding is automatically generated from an upper abstraction layer, mining developer's actions in the development platforms is a promising approach to early detect not only behaviors but also assess project complexity and model effort.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.