Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 30 Jan 2021 (v1), last revised 20 Aug 2021 (this version, v2)]
Title:Adversarially learning disentangled speech representations for robust multi-factor voice conversion
View PDFAbstract:Factorizing speech as disentangled speech representations is vital to achieve highly controllable style transfer in voice conversion (VC). Conventional speech representation learning methods in VC only factorize speech as speaker and content, lacking controllability on other prosody-related factors. State-of-the-art speech representation learning methods for more speechfactors are using primary disentangle algorithms such as random resampling and ad-hoc bottleneck layer size adjustment,which however is hard to ensure robust speech representationdisentanglement. To increase the robustness of highly controllable style transfer on multiple factors in VC, we propose a disentangled speech representation learning framework based on adversarial learning. Four speech representations characterizing content, timbre, rhythm and pitch are extracted, and further disentangled by an adversarial Mask-And-Predict (MAP)network inspired by BERT. The adversarial network is used tominimize the correlations between the speech representations,by randomly masking and predicting one of the representationsfrom the others. Experimental results show that the proposedframework significantly improves the robustness of VC on multiple factors by increasing the speech quality MOS from 2.79 to3.30 and decreasing the MCD from 3.89 to 3.58.
Submission history
From: Jie Wang [view email][v1] Sat, 30 Jan 2021 08:29:55 UTC (570 KB)
[v2] Fri, 20 Aug 2021 07:20:00 UTC (496 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.