Electrical Engineering and Systems Science > Systems and Control
[Submitted on 18 Feb 2021 (v1), last revised 21 Jul 2024 (this version, v2)]
Title:Online Optimization and Ambiguity-based Learning of Distributionally Uncertain Dynamic Systems
View PDF HTML (experimental)Abstract:This paper proposes a novel approach to construct data-driven online solutions to optimization problems (P) subject to a class of distributionally uncertain dynamical systems. The introduced framework allows for the simultaneous learning of distributional system uncertainty via a parameterized, control-dependent ambiguity set using a finite historical data set, and its use to make online decisions with probabilistic regret function bounds. Leveraging the merits of Machine Learning, the main technical approach relies on the theory of Distributional Robust Optimization (DRO), to hedge against uncertainty and provide less conservative results than standard Robust Optimization approaches. Starting from recent results that describe ambiguity sets via parameterized, and control-dependent empirical distributions as well as ambiguity radii, we first present a tractable reformulation of the corresponding optimization problem while maintaining the probabilistic guarantees. We then specialize these problems to the cases of 1) optimal one-stage control of distributionally uncertain nonlinear systems, and 2) resource allocation under distributional uncertainty. A novelty of this work is that it extends DRO to online optimization problems subject to a distributionally uncertain dynamical system constraint, handled via a control-dependent ambiguity set that leads to online-tractable optimization with probabilistic guarantees on regret bounds. Further, we introduce an online version of Nesterov's accelerated-gradient algorithm, and analyze its performance to solve this class of problems via dissipativity theory.
Submission history
From: Dan Li [view email][v1] Thu, 18 Feb 2021 01:49:06 UTC (1,606 KB)
[v2] Sun, 21 Jul 2024 18:11:23 UTC (4,290 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.