Computer Science > Formal Languages and Automata Theory
[Submitted on 21 Feb 2021 (v1), last revised 23 Feb 2021 (this version, v2)]
Title:Model Checking for Decision Making System of Long Endurance Unmanned Surface Vehicle
View PDFAbstract:This work aims to develop a model checking method to verify the decision making system of Unmanned Surface Vehicle (USV) in a long range surveillance mission. The scenario in this work was captured from a long endurance USV surveillance mission using C-Enduro, an USV manufactured by ASV Ltd. The C-Enduro USV may encounter multiple non-deterministic and concurrent problems including lost communication signals, collision risk and malfunction. The vehicle is designed to utilise multiple energy sources from solar panel, wind turbine and diesel generator. The energy state can be affected by the solar irradiance condition, wind condition, states of the diesel generator, sea current condition and states of the USV. In this research, the states and the interactive relations between environmental uncertainties, sensors, USV energy system, USV and Ground Control Station (GCS) decision making systems are abstracted and modelled successfully using Kripke models. The desirable properties to be verified are expressed using temporal logic statement and finally the safety properties and the long endurance properties are verified using the model checker MCMAS, a model checker for multi-agent systems. The verification results are analyzed and show the feasibility of applying model checking method to retrospect the desirable property of the USV decision making system. This method could assist researcher to identify potential design error of decision making system in advance.
Submission history
From: Hanlin Niu [view email][v1] Sun, 21 Feb 2021 13:42:40 UTC (2,432 KB)
[v2] Tue, 23 Feb 2021 02:53:18 UTC (2,432 KB)
Current browse context:
cs.FL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.