Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Mar 2021 (v1), last revised 12 Jul 2021 (this version, v2)]
Title:Learning Multiscale Correlations for Human Motion Prediction
View PDFAbstract:In spite of the great progress in human motion prediction, it is still a challenging task to predict those aperiodic and complicated motions. We believe that to capture the correlations among human body components is the key to understand the human motion. In this paper, we propose a novel multiscale graph convolution network (MGCN) to address this problem. Firstly, we design an adaptive multiscale interactional encoding module (MIEM) which is composed of two sub modules: scale transformation module and scale interaction module to learn the human body correlations. Secondly, we apply a coarse-to-fine decoding strategy to decode the motions sequentially. We evaluate our approach on two standard benchmark datasets for human motion prediction: Human3.6M and CMU motion capture dataset. The experiments show that the proposed approach achieves the state-of-the-art performance for both short-term and long-term prediction especially in those complicated action category.
Submission history
From: Honghong Zhou [view email][v1] Fri, 19 Mar 2021 07:58:16 UTC (1,874 KB)
[v2] Mon, 12 Jul 2021 07:09:23 UTC (2,261 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.