Computer Science > Databases
[Submitted on 26 Mar 2021 (v1), last revised 29 Mar 2021 (this version, v2)]
Title:HUGE: An Efficient and Scalable Subgraph Enumeration System
View PDFAbstract:Subgraph enumeration is a fundamental problem in graph analytics, which aims to find all instances of a given query graph on a large data graph. In this paper, we propose a system called HUGE to efficiently process subgraph enumeration at scale in the distributed context. HUGE features 1) an optimiser to compute an advanced execution plan without the constraints of existing works; 2) a hybrid communication layer that supports both pushing and pulling communication; 3) a novel two-stage execution mode with a lock-free and zero-copy cache design, 4) a BFS/DFS-adaptive scheduler to bound memory consumption, and 5) two-layer intra- and inter-machine load balancing. HUGE is generic such that all existing distributed subgraph enumeration algorithms can be plugged in to enjoy automatic speed up and bounded-memory execution.
Submission history
From: Zhengyi Yang [view email][v1] Fri, 26 Mar 2021 06:57:23 UTC (1,455 KB)
[v2] Mon, 29 Mar 2021 11:29:08 UTC (1,435 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.