Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Mar 2021]
Title:Few-Shot Human Motion Transfer by Personalized Geometry and Texture Modeling
View PDFAbstract:We present a new method for few-shot human motion transfer that achieves realistic human image generation with only a small number of appearance inputs. Despite recent advances in single person motion transfer, prior methods often require a large number of training images and take long training time. One promising direction is to perform few-shot human motion transfer, which only needs a few of source images for appearance transfer. However, it is particularly challenging to obtain satisfactory transfer results. In this paper, we address this issue by rendering a human texture map to a surface geometry (represented as a UV map), which is personalized to the source person. Our geometry generator combines the shape information from source images, and the pose information from 2D keypoints to synthesize the personalized UV map. A texture generator then generates the texture map conditioned on the texture of source images to fill out invisible parts. Furthermore, we may fine-tune the texture map on the manifold of the texture generator from a few source images at the test time, which improves the quality of the texture map without over-fitting or artifacts. Extensive experiments show the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively. Our code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.