Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Apr 2021]
Title:"Forget" the Forget Gate: Estimating Anomalies in Videos using Self-contained Long Short-Term Memory Networks
View PDFAbstract:Abnormal event detection is a challenging task that requires effectively handling intricate features of appearance and motion. In this paper, we present an approach of detecting anomalies in videos by learning a novel LSTM based self-contained network on normal dense optical flow. Due to their sigmoid implementations, standard LSTM's forget gate is susceptible to overlooking and dismissing relevant content in long sequence tasks like abnormality detection. The forget gate mitigates participation of previous hidden state for computation of cell state prioritizing current input. In addition, the hyperbolic tangent activation of standard LSTMs sacrifices performance when a network gets deeper. To tackle these two limitations, we introduce a bi-gated, light LSTM cell by discarding the forget gate and introducing sigmoid activation. Specifically, the LSTM architecture we come up with fully sustains content from previous hidden state thereby enabling the trained model to be robust and make context-independent decision during evaluation. Removing the forget gate results in a simplified and undemanding LSTM cell with improved performance effectiveness and computational efficiency. Empirical evaluations show that the proposed bi-gated LSTM based network outperforms various LSTM based models verifying its effectiveness for abnormality detection and generalization tasks on CUHK Avenue and UCSD datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.