Computer Science > Artificial Intelligence
[Submitted on 12 Apr 2021]
Title:Deep Attributed Network Representation Learning via Attribute Enhanced Neighborhood
View PDFAbstract:Attributed network representation learning aims at learning node embeddings by integrating network structure and attribute information. It is a challenge to fully capture the microscopic structure and the attribute semantics simultaneously, where the microscopic structure includes the one-step, two-step and multi-step relations, indicating the first-order, second-order and high-order proximity of nodes, respectively. In this paper, we propose a deep attributed network representation learning via attribute enhanced neighborhood (DANRL-ANE) model to improve the robustness and effectiveness of node representations. The DANRL-ANE model adopts the idea of the autoencoder, and expands the decoder component to three branches to capture different order proximity. We linearly combine the adjacency matrix with the attribute similarity matrix as the input of our model, where the attribute similarity matrix is calculated by the cosine similarity between the attributes based on the social homophily. In this way, we preserve the second-order proximity to enhance the robustness of DANRL-ANE model on sparse networks, and deal with the topological and attribute information simultaneously. Moreover, the sigmoid cross-entropy loss function is extended to capture the neighborhood character, so that the first-order proximity is better preserved. We compare our model with the state-of-the-art models on five real-world datasets and two network analysis tasks, i.e., link prediction and node classification. The DANRL-ANE model performs well on various networks, even on sparse networks or networks with isolated nodes given the attribute information is sufficient.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.