Computer Science > Information Retrieval
[Submitted on 17 Apr 2021 (v1), last revised 11 May 2021 (this version, v2)]
Title:ScaleFreeCTR: MixCache-based Distributed Training System for CTR Models with Huge Embedding Table
View PDFAbstract:Because of the superior feature representation ability of deep learning, various deep Click-Through Rate (CTR) models are deployed in the commercial systems by industrial companies. To achieve better performance, it is necessary to train the deep CTR models on huge volume of training data efficiently, which makes speeding up the training process an essential problem. Different from the models with dense training data, the training data for CTR models is usually high-dimensional and sparse. To transform the high-dimensional sparse input into low-dimensional dense real-value vectors, almost all deep CTR models adopt the embedding layer, which easily reaches hundreds of GB or even TB. Since a single GPU cannot afford to accommodate all the embedding parameters, when performing distributed training, it is not reasonable to conduct the data-parallelism only. Therefore, existing distributed training platforms for recommendation adopt model-parallelism. Specifically, they use CPU (Host) memory of servers to maintain and update the embedding parameters and utilize GPU worker to conduct forward and backward computations. Unfortunately, these platforms suffer from two bottlenecks: (1) the latency of pull \& push operations between Host and GPU; (2) parameters update and synchronization in the CPU servers. To address such bottlenecks, in this paper, we propose the ScaleFreeCTR: a MixCache-based distributed training system for CTR models. Specifically, in SFCTR, we also store huge embedding table in CPU but utilize GPU instead of CPU to conduct embedding synchronization efficiently. To reduce the latency of data transfer between both GPU-Host and GPU-GPU, the MixCache mechanism and Virtual Sparse Id operation are proposed. Comprehensive experiments and ablation studies are conducted to demonstrate the effectiveness and efficiency of SFCTR.
Submission history
From: Huifeng Guo [view email][v1] Sat, 17 Apr 2021 13:36:19 UTC (1,238 KB)
[v2] Tue, 11 May 2021 14:11:46 UTC (1,162 KB)
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.