Computer Science > Machine Learning
[Submitted on 17 Apr 2021]
Title:Fuzzy Discriminant Clustering with Fuzzy Pairwise Constraints
View PDFAbstract:In semi-supervised fuzzy clustering, this paper extends the traditional pairwise constraint (i.e., must-link or cannot-link) to fuzzy pairwise constraint. The fuzzy pairwise constraint allows a supervisor to provide the grade of similarity or dissimilarity between the implicit fuzzy vectors of a pair of samples. This constraint can present more complicated relationship between the pair of samples and avoid eliminating the fuzzy characteristics. We propose a fuzzy discriminant clustering model (FDC) to fuse the fuzzy pairwise constraints. The nonconvex optimization problem in our FDC is solved by a modified expectation-maximization algorithm, involving to solve several indefinite quadratic programming problems (IQPPs). Further, a diagonal block coordinate decent (DBCD) algorithm is proposed for these IQPPs, whose stationary points are guaranteed, and the global solutions can be obtained under certain conditions. To suit for different applications, the FDC is extended into various metric spaces, e.g., the Reproducing Kernel Hilbert Space. Experimental results on several benchmark datasets and facial expression database demonstrate the outperformance of our FDC compared with some state-of-the-art clustering models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.