Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 11 Apr 2021 (v1), last revised 8 Jun 2022 (this version, v2)]
Title:GraphGuess: Approximate Graph Processing System with Adaptive Correction
View PDFAbstract:Graph-based data structures have drawn great attention in recent years. The large and rapidly growing trend on developing graph processing systems focuses mostly on improving the performance by preprocessing the input graph and modifying its layout. These systems usually take several hours to days to complete processing a single graph on high-end machines, let alone the overhead of pre-processing which most of the time can be dominant. Yet for most graph applications the exact answer is not always crucial, and providing a rough estimate of the final result is adequate. Approximate computing is introduced to trade off accuracy of results for computation or energy savings that could not be achieved by conventional techniques alone. In this work, we design, implement and evaluate GraphGuess, inspired from the domain of approximate graph theory and extend it to a general, practical graph processing system. GraphGuess is essentially an approximate graph processing technique with adaptive correction, which can be implemented on top of any graph processing system. We build a vertex-centric processing system based on GraphGuess, where it allows the user to trade off accuracy for better performance. Our experimental studies show that using GraphGuess can significantly reduce the processing time for large scale graphs while maintaining high accuracy.
Submission history
From: Morteza Ramezani [view email][v1] Sun, 11 Apr 2021 19:50:50 UTC (615 KB)
[v2] Wed, 8 Jun 2022 23:49:41 UTC (1,026 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.