Computer Science > Machine Learning
[Submitted on 29 Apr 2021 (v1), last revised 22 Aug 2022 (this version, v2)]
Title:Graph-Embedded Subspace Support Vector Data Description
View PDFAbstract:In this paper, we propose a novel subspace learning framework for one-class classification. The proposed framework presents the problem in the form of graph embedding. It includes the previously proposed subspace one-class techniques as its special cases and provides further insight on what these techniques actually optimize. The framework allows to incorporate other meaningful optimization goals via the graph preserving criterion and reveals a spectral solution and a spectral regression-based solution as alternatives to the previously used gradient-based technique. We combine the subspace learning framework iteratively with Support Vector Data Description applied in the subspace to formulate Graph-Embedded Subspace Support Vector Data Description. We experimentally analyzed the performance of newly proposed different variants. We demonstrate improved performance against the baselines and the recently proposed subspace learning methods for one-class classification.
Submission history
From: Fahad Sohrab [view email][v1] Thu, 29 Apr 2021 14:30:48 UTC (720 KB)
[v2] Mon, 22 Aug 2022 15:52:23 UTC (3,620 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.