Computer Science > Machine Learning
[Submitted on 6 May 2021]
Title:Towards Content Provider Aware Recommender Systems: A Simulation Study on the Interplay between User and Provider Utilities
View PDFAbstract:Most existing recommender systems focus primarily on matching users to content which maximizes user satisfaction on the platform. It is increasingly obvious, however, that content providers have a critical influence on user satisfaction through content creation, largely determining the content pool available for recommendation. A natural question thus arises: can we design recommenders taking into account the long-term utility of both users and content providers? By doing so, we hope to sustain more providers and a more diverse content pool for long-term user satisfaction. Understanding the full impact of recommendations on both user and provider groups is challenging. This paper aims to serve as a research investigation of one approach toward building a provider-aware recommender, and evaluating its impact in a simulated setup.
To characterize the user-recommender-provider interdependence, we complement user modeling by formalizing provider dynamics as well. The resulting joint dynamical system gives rise to a weakly-coupled partially observable Markov decision process driven by recommender actions and user feedback to providers. We then build a REINFORCE recommender agent, coined EcoAgent, to optimize a joint objective of user utility and the counterfactual utility lift of the provider associated with the recommended content, which we show to be equivalent to maximizing overall user utility and the utilities of all providers on the platform under some mild assumptions. To evaluate our approach, we introduce a simulation environment capturing the key interactions among users, providers, and the recommender. We offer a number of simulated experiments that shed light on both the benefits and the limitations of our approach. These results help understand how and when a provider-aware recommender agent is of benefit in building multi-stakeholder recommender systems.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.