Electrical Engineering and Systems Science > Signal Processing
[Submitted on 1 May 2021]
Title:A High-Performance, Reconfigurable, Fully Integrated Time-Domain Reflectometry Architecture Using Digital I/Os
View PDFAbstract:Time-domain reflectometry (TDR) is an established means of measuring impedance inhomogeneity of a variety of waveguides, providing critical data necessary to characterize and optimize the performance of high-bandwidth computational and communication systems. However, TDR systems with both the high spatial resolution (sub-cm) and voltage resolution (sub-$\muV$) required to evaluate high-performance waveguides are physically large and often cost-prohibitive, severely limiting their utility as testing platforms and greatly limiting their use in characterizing and trouble-shooting fielded hardware.
Consequently, there exists a growing technical need for an electronically simple, portable, and low-cost TDR technology. The receiver of a TDR system plays a key role in recording reflection waveforms; thus, such a receiver must have high analog bandwidth, high sampling rate, and high-voltage resolution. However, these requirements are difficult to meet using low-cost analog-to-digital converters (ADCs). This article describes a new TDR architecture, namely, jitter-based APC (JAPC), which obviates the need for external components based on an alternative concept, analog-to-probability conversion (APC) that was recently proposed. These results demonstrate that a fully reconfigurable and highly integrated TDR (iTDR) can be implemented on a field-programmable gate array (FPGA) chip without using any external circuit components. Empirical evaluation of the system was conducted using an HDMI cable as the device under test (DUT), and the resulting impedance inhomogeneity pattern (IIP) of the DUT was extracted with spatial and voltage resolutions of 5 cm and 80 $\muV$, respectively. These results demonstrate the feasibility of using the prototypical JAPC-based iTDR for real-world waveguide characterization applications
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.