Computer Science > Information Retrieval
[Submitted on 7 May 2021]
Title:DA-GCN: A Domain-aware Attentive Graph Convolution Network for Shared-account Cross-domain Sequential Recommendation
View PDFAbstract:Shared-account Cross-domain Sequential recommendation (SCSR) is the task of recommending the next item based on a sequence of recorded user behaviors, where multiple users share a single account, and their behaviours are available in multiple domains. Existing work on solving SCSR mainly relies on mining sequential patterns via RNN-based models, which are not expressive enough to capture the relationships among multiple entities. Moreover, all existing algorithms try to bridge two domains via knowledge transfer in the latent space, and the explicit cross-domain graph structure is unexploited. In this work, we propose a novel graph-based solution, namely DA-GCN, to address the above challenges. Specifically, we first link users and items in each domain as a graph. Then, we devise a domain-aware graph convolution network to learn user-specific node representations. To fully account for users' domain-specific preferences on items, two novel attention mechanisms are further developed to selectively guide the message passing process. Extensive experiments on two real-world datasets are conducted to demonstrate the superiority of our DA-GCN method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.